Rat BMP4 ELISA Kit
- SKU:
- RTFI00057
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- Q06826
- Sensitivity:
- 9.375pg/ml
- Range:
- 15.625-1000pg/ml
- ELISA Type:
- Sandwich ELISA, Double Antibody
- Synonyms:
- BMP-4, BMP2B, BMP2B1, MCOPS6, ZYME, DVR4, OFC11, ZYME
- Reactivity:
- Rat
Description
商品名: | Rat BMP-4 (Bone morphogenetic protein 4) ELISA Kit |
製品コード: | RTFI00057 |
サイズ: | 96 Assays |
目標: | Rat BMP-4 |
エイリアス: | BMP-4, BMP2B, BMP2B1, MCOPS6, ZYME, DVR4, OFC11, ZYME |
反応性: | Rat |
検出方法: | Sandwich ELISA, Double Antibody |
感度: | 9.375pg/ml |
範囲: | 15.625-1000pg/ml |
保管所: | 4°C for 6 months |
ノート: | For Research Use Only |
回復: | Matrices listed below were spiked with certain level of Rat BMP-4 and the recovery rates were calculated by comparing the measured value to the expected amount of Rat BMP-4 in samples. | ||||||||||||||||
| |||||||||||||||||
直線性: | The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Rat BMP-4 and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected. | ||||||||||||||||
| |||||||||||||||||
Intra-Assay: | CV <8% | ||||||||||||||||
Inter-Assay: | CV <10% |
Uniprot: | Q06826 |
UniProt Protein Function: | BMP4: Induces cartilage and bone formation. Also act in mesoderm induction, tooth development, limb formation and fracture repair. Acts in concert with PTHLH/PTHRP to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Homodimer; disulfide-linked. Interacts with GREM2. Part of a complex consisting of TWSG1 and CHRD. Interacts with the serine proteases, HTRA1 and HTRA3; the interaction with either inhibits BMP4-mediated signaling. The HTRA protease activity is required for this inhibition. Interacts with SOSTDC1. Expressed in the lung and lower levels seen in the kidney. Present also in normal and neoplastic prostate tissues, and prostate cancer cell lines. Belongs to the TGF-beta family. |
UniProt Protein Details: | Protein type:Secreted; Secreted, signal peptide Cellular Component: extracellular space; proteinaceous extracellular matrix; cytoplasm; extracellular region Molecular Function:heparin binding; protein homodimerization activity; growth factor activity; cytokine activity; transforming growth factor beta receptor binding; chemoattractant activity Biological Process: negative regulation of MAP kinase activity; activation of MAPKK activity; positive regulation of apoptosis; positive regulation of transcription, DNA-dependent; embryonic skeletal development; negative regulation of chondrocyte differentiation; mesodermal cell differentiation; telencephalon regionalization; germ cell development; regulation of protein import into nucleus; BMP signaling pathway; anatomical structure formation; mesonephros development; kidney development; endochondral ossification; regulation of odontogenesis of dentine-containing teeth; embryonic limb morphogenesis; positive regulation of cardiac muscle fiber development; negative regulation of immature T cell proliferation in the thymus; tongue morphogenesis; cell fate commitment; camera-type eye development; regulation of smooth muscle cell proliferation; neuron fate commitment; response to testosterone stimulus; camera-type eye morphogenesis; regulation of gene expression; retina development in camera-type eye; response to mechanical stimulus; negative regulation of mitosis; positive regulation of epidermal cell differentiation; smooth muscle cell differentiation; positive regulation of transcription from RNA polymerase II promoter; embryonic digit morphogenesis; negative regulation of apoptosis; tissue development; wound healing; positive regulation of protein binding; cloacal septation; negative regulation of transcription from RNA polymerase II promoter; anatomical structure regression; negative regulation of cell proliferation; inner ear receptor cell differentiation; ureteric bud development; intermediate mesodermal cell differentiation; forebrain development; positive regulation of cell proliferation; angiogenesis; embryonic morphogenesis; positive regulation of BMP signaling pathway; common-partner SMAD protein phosphorylation; negative regulation of T cell differentiation in the thymus; positive regulation of bone mineralization; positive regulation of ossification; embryonic skeletal morphogenesis; odontogenesis of dentine-containing teeth; osteoblast differentiation; positive regulation of osteoblast differentiation; cell proliferation; blood vessel endothelial cell proliferation during sprouting angiogenesis; telencephalon development; ureteric bud branching; regulation of cell fate commitment; brain development; positive regulation of neuron differentiation; anterior/posterior axis specification; lung development; renal system process; macrophage differentiation; heart development; response to glucocorticoid stimulus; lymphoid progenitor cell differentiation; response to organic cyclic substance; post-embryonic development; positive regulation of endothelial cell differentiation; positive chemotaxis; induction of an organ; erythrocyte differentiation; chondrocyte differentiation; mesoderm development; specification of organ position; monocyte differentiation; embryonic cranial skeleton morphogenesis; negative regulation of striated muscle development; mesoderm formation; branching morphogenesis of a tube; negative regulation of phosphorylation; positive regulation of endothelial cell proliferation; hemopoietic progenitor cell differentiation; steroid hormone mediated signaling; negative regulation of transcription, DNA-dependent; positive regulation of cell differentiation; metanephros development; alveolus development; positive regulation of epithelial cell proliferation; positive regulation of smooth muscle cell proliferation; positive regulation of collagen biosynthetic process; embryonic hindlimb morphogenesis; response to estradiol stimulus; negative regulation of cell cycle; odontogenesis; smooth muscle development; vasculature development; ovarian follicle development; regulation of cell differentiation; regulation of smooth muscle cell differentiation; skeletal development; dorsoventral neural tube patterning; negative regulation of epithelial cell proliferation; blood vessel development; smoothened signaling pathway; response to retinoic acid; negative regulation of oligodendrocyte differentiation; eye development; pituitary gland development; neural tube closure; positive regulation of protein amino acid phosphorylation; negative regulation of myoblast differentiation; mesodermal cell fate determination; growth |
NCBI Summary: | plays a role in induction of cell proliferation [RGD, Feb 2006] |
UniProt Code: | Q06826 |
NCBI GenInfo Identifier: | 543902 |
NCBI Gene ID: | 25296 |
NCBI Accession: | Q06826.1 |
UniProt Related Accession: | Q06826 |
Molecular Weight: | 19.5kDa |
NCBI Full Name: | Bone morphogenetic protein 4 |
NCBI Synonym Full Names: | bone morphogenetic protein 4 |
NCBI Official Symbol: | Bmp4 |
NCBI Official Synonym Symbols: | BOMPR4A |
NCBI Protein Information: | bone morphogenetic protein 4; BMP-4; BMP-2B; bone morphogenetic protein 2B |
UniProt Protein Name: | Bone morphogenetic protein 4 |
UniProt Synonym Protein Names: | Bone morphogenetic protein 2B |
Protein Family: | Bone morphogenetic protein |
UniProt Gene Name: | Bmp4 |
UniProt Entry Name: | BMP4_RAT |
ステップ | プロトコル |
1. | Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (zero) wells! |
2. | Aliquot 0.1ml standard solutions into the standard wells. |
3. | Add 0.1 ml of Sample / Standard dilution buffer into the control (zero) well. |
4. | Add 0.1 ml of properly diluted sample ( Human serum, plasma, tissue homogenates and other biological fluids.) into test sample wells. |
5. | Seal the plate with a cover and incubate at 37°C for 90 min. |
6. | Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. Do NOT let the wells completely dry at any time. Wash plate X2. |
7. | Add 0.1 ml of Biotin- detection antibody working solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall. |
8. | Seal the plate with a cover and incubate at 37°C for 60 min. |
9. | Remove the cover, and wash plate 3 times with Wash buffer. Let wash buffer rest in wells for 1 min between each wash. |
10. | Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min. |
11. | Remove the cover and wash plate 5 times with Wash buffer, and each time let the wash buffer stay in the wells for 1-2 min. |
12. | Add 90 µL of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 min. (Note: This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated standard solutions), the other wells show no obvious color. |
13. | Add 50 µL of Stop solution into each well and mix thoroughly. The color changes into yellow immediately. |
14. | Read the O.D. absorbance at 450 nm in a microplate reader immediately after adding the stop solution. |
ELISAアッセイを実施する場合、可能な限り最良の結果を達成するためにサンプルを準備することが重要です。以下に、さまざまなサンプルタイプのサンプルを準備するための手順のリストを示します。
サンプルタイプ | プロトコル |
血清 | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clotovernight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Removeserum and assay promptly or aliquot and store the samples at-80°C. Avoid multiple freeze-thaw cycles. |
プラズマ | Collect plasma using EDTA or heparin as an anti-coagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.Note: Over haemolysed samples are not suitable for use with this kit. |
尿および脳脊髄液 | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
細胞培養上清 | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
細胞溶解物 | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20°C. |
組織ホモジネート | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenizein 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or-80°C. |
組織溶解物 | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
母乳 | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |