Human Sonic hedgehog protein (SHH) ELISA Kit
- SKU:
- HUEB0288
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- Q15465
- Range:
- 78-5000 pg/ml
- ELISA Type:
- Sandwich
- Synonyms:
- SHH, Shh, HHG1, HHG-1, HLP3, HPE3, SMMCIsonic hedgehog homolog, Drosophila, sonic hedgehog, sonic hedgehog homolog, sonic hedgehog protein, TPT, TPTPS
- Reactivity:
- Human
Description
商品名: | Human Sonic hedgehog protein (SHH) ELISA Kit |
製品コード: | HUEB0288 |
エイリアス: | Sonic hedgehog protein, SHH, HHG-1, SHH |
Uniprot: | Q15465 |
反応性: | Human |
範囲: | 78-5000 pg/ml |
検出方法: | Sandwich |
サイズ: | 96 Assay |
保管所: | Please see kit components below for exact storage details |
ノート: | For research use only |
UniProt Protein Function: | SHH: Binds to the patched (PTC) receptor, which functions in association with smoothened (SMO), to activate the transcription of target genes. In the absence of SHH, PTC represses the constitutive signaling activity of SMO. Also regulates another target, the gli oncogene. Intercellular signal essential for a variety of patterning events during development: signal produced by the notochord that induces ventral cell fate in the neural tube and somites, and the polarizing signal for patterning of the anterior-posterior axis of the developing limb bud. Displays both floor plate- and motor neuron-inducing activity. The threshold concentration of N-product required for motor neuron induction is 5-fold lower than that required for floor plate induction. Interacts with HHATL/GUP1 which negatively regulates HHAT-mediated palmitoylation of the SHH N-terminus. N-product is active as a multimer. Expressed in fetal intestine, liver, lung, and kidney. Not expressed in adult tissues. Belongs to the hedgehog family. |
UniProt Protein Details: | Protein type:Motility/polarity/chemotaxis; Cell cycle regulation; Oncoprotein; Cell development/differentiation Chromosomal Location of Human Ortholog: 7q36 Cellular Component: extracellular matrix; extracellular space; cell surface; endoplasmic reticulum lumen; plasma membrane; extracellular region; nucleus; cytosol; lipid raft Molecular Function:laminin-1 binding; peptidase activity; morphogen activity; protein binding; glycosaminoglycan binding; zinc ion binding; patched binding; calcium ion binding; glycoprotein binding Biological Process: prostate gland development; central nervous system development; positive regulation of transcription, DNA-dependent; embryonic skeletal development; telencephalon regionalization; embryonic foregut morphogenesis; male genitalia development; neural crest cell migration; inner ear development; embryonic limb morphogenesis; hindbrain development; positive regulation of neuroblast proliferation; camera-type eye development; neuron fate commitment; myotube differentiation; intermediate filament organization; osteoblast development; positive regulation of skeletal muscle cell proliferation; positive regulation of cell division; regulation of proteolysis; positive regulation of transcription from RNA polymerase II promoter; embryonic digit morphogenesis; negative regulation of apoptosis; embryonic forelimb morphogenesis; axon guidance; granule cell precursor proliferation; ventral midline development; spinal cord dorsal/ventral patterning; thalamus development; positive regulation of striated muscle cell differentiation; negative regulation of transcription from RNA polymerase II promoter; palate development; Bergmann glial cell differentiation; negative regulation of T cell proliferation; positive regulation of cell proliferation; pancreas development; forebrain development; thyroid gland development; heart looping; vasculogenesis; negative regulation of cell migration; positive thymic T cell selection; intein-mediated protein splicing; regulation of odontogenesis; androgen metabolic process; spinal cord motor neuron differentiation; pattern specification process; regulation of cell proliferation; odontogenesis of dentine-containing teeth; negative regulation of cell differentiation; stem cell development; embryonic development; dorsal/ventral pattern formation; positive regulation of protein import into nucleus; ureteric bud branching; hindgut morphogenesis; lung development; negative regulation of alpha-beta T cell differentiation; heart development; T cell differentiation in the thymus; CD4-positive or CD8-positive, alpha-beta T cell lineage commitment; lymphoid progenitor cell differentiation; Wnt receptor signaling pathway through beta-catenin; embryonic pattern specification; proteolysis; positive regulation of T cell differentiation in the thymus; cell-cell signaling; embryonic digestive tract morphogenesis; midbrain development; ectoderm development; positive regulation of smoothened signaling pathway; positive regulation of oligodendrocyte differentiation; oligodendrocyte development; activation of hh target transcription factor; striated muscle development; endocytosis; positive regulation of skeletal muscle development; negative thymic T cell selection; patterning of blood vessels; branching morphogenesis of a tube; polarity specification of anterior/posterior axis; metanephros development; cell fate specification; embryonic hindlimb morphogenesis; positive regulation of Wnt receptor signaling pathway; dorsoventral neural tube patterning; smoothened signaling pathway; organ formation; hair follicle morphogenesis; thymus development; smoothened signaling pathway in regulation of granule cell precursor cell proliferation; positive regulation of immature T cell proliferation in the thymus; negative regulation of proteasomal ubiquitin-dependent protein catabolic process; formation of anatomical boundary; myoblast differentiation; limb bud formation; establishment of cell polarity; neuroblast proliferation; blood coagulation; cell development; positive regulation of alpha-beta T cell differentiation Disease: Solitary Median Maxillary Central Incisor; Schizencephaly; Microphthalmia, Isolated, With Coloboma 5; Holoprosencephaly 3 |
NCBI Summary: | This gene encodes a protein that is instrumental in patterning the early embryo. It has been implicated as the key inductive signal in patterning of the ventral neural tube, the anterior-posterior limb axis, and the ventral somites. Of three human proteins showing sequence and functional similarity to the sonic hedgehog protein of Drosophila, this protein is the most similar. The protein is made as a precursor that is autocatalytically cleaved; the N-terminal portion is soluble and contains the signalling activity while the C-terminal portion is involved in precursor processing. More importantly, the C-terminal product covalently attaches a cholesterol moiety to the N-terminal product, restricting the N-terminal product to the cell surface and preventing it from freely diffusing throughout the developing embryo. Defects in this protein or in its signalling pathway are a cause of holoprosencephaly (HPE), a disorder in which the developing forebrain fails to correctly separate into right and left hemispheres. HPE is manifested by facial deformities. It is also thought that mutations in this gene or in its signalling pathway may be responsible for VACTERL syndrome, which is characterized by vertebral defects, anal atresia, tracheoesophageal fistula with esophageal atresia, radial and renal dysplasia, cardiac anomalies, and limb abnormalities. Additionally, mutations in a long range enhancer located approximately 1 megabase upstream of this gene disrupt limb patterning and can result in preaxial polydactyly. [provided by RefSeq, Jul 2008] |
UniProt Code: | Q15465 |
NCBI GenInfo Identifier: | 6094283 |
NCBI Gene ID: | 6469 |
NCBI Accession: | Q15465.1 |
UniProt Secondary Accession: | Q15465,Q75MC9, A4D247, |
UniProt Related Accession: | Q15465 |
Molecular Weight: | 49,607 Da |
NCBI Full Name: | Sonic hedgehog protein |
NCBI Synonym Full Names: | sonic hedgehog |
NCBI Official Symbol: | SHHÂ Â |
NCBI Official Synonym Symbols: | TPT; HHG1; HLP3; HPE3; SMMCI; TPTPS; MCOPCB5Â Â |
NCBI Protein Information: | sonic hedgehog protein; sonic hedgehog homolog |
UniProt Protein Name: | Sonic hedgehog protein |
UniProt Synonym Protein Names: | HHG-1Cleaved into the following 2 chains:Sonic hedgehog protein N-product; Sonic hedgehog protein C-product |
Protein Family: | Sonic hedgehog protein |
UniProt Gene Name: | SHHÂ Â |
UniProt Entry Name: | SHH_HUMAN |
成分 | 額 | 保管所 |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
その他の必要な材料と設備:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*ノート: プロトコルは、各バッチ/ロットに固有です。正しい手順については、キットに含まれているプロトコルに従ってください。
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
ステップ | プロトコル |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
ELISAアッセイを実施する場合、可能な限り最良の結果を達成するためにサンプルを準備することが重要です。以下に、さまざまなサンプルタイプのサンプルを準備するための手順のリストを示します。
サンプルタイプ: | プロトコル: |
血清: | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
プラズマ: | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
尿および脳脊髄液: | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
細胞培養上清: | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
細胞溶解物: | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
組織ホモジネート: | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
組織溶解物: | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
母乳: | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |