Human Multiple coagulation factor deficiency protein 2 (MCFD2) ELISA Kit
- SKU:
- HUEB1721
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- Q8NI22
- Range:
- 78-5000 pg/mL
- ELISA Type:
- Sandwich
- Synonyms:
- MCFD2, Multiple coagulation factor deficiency protein 2, Neural stem cell-derived neuronal survival protein, SDNSF
- Reactivity:
- Human
Description
商品名: | Human Multiple coagulation factor deficiency protein 2 (MCFD2) ELISA Kit |
製品コード: | HUEB1721 |
エイリアス: | Multiple coagulation factor deficiency protein 2, Neural stem cell-derived neuronal survival protein, MCFD2, SDNSF |
Uniprot: | Q8NI22 |
反応性: | Human |
範囲: | 78-5000 pg/mL |
検出方法: | Sandwich |
サイズ: | 96 Assay |
保管所: | Please see kit components below for exact storage details |
ノート: | For research use only |
UniProt Protein Function: | MCFD2: The MCFD2-LMAN1 complex forms a specific cargo receptor for the ER-to-Golgi transport of selected proteins. Plays a role in the secretion of coagulation factors. Defects in MCFD2 are a cause of factor V and factor VIII combined deficiency type 2 (F5F8D2); also known as multiple coagulation factor deficiency 2 (MCFD2). F5F8D2 is a blood coagulation disorder characterized by bleeding symptoms similar to those in hemophilia or parahemophilia, that are caused by single deficiency of FV or FVIII, respectively. The most common symptoms are epistaxis, menorrhagia, and excessive bleeding during or after trauma. Plasma levels of coagulation factors V and VIII are in the range of 5 to 30% of normal. 3 isoforms of the human protein are produced by alternative splicing. |
UniProt Protein Details: | Protein type:Endoplasmic reticulum Chromosomal Location of Human Ortholog: 2p21 Cellular Component: endoplasmic reticulum membrane; ER-Golgi intermediate compartment membrane Biological Process: COPII coating of Golgi vesicle; ER to Golgi vesicle-mediated transport; protein amino acid N-linked glycosylation via asparagine Disease: Factor V And Factor Viii, Combined Deficiency Of, 2 |
NCBI Summary: | This gene encodes a soluble luminal protein with two calmodulin-like EF-hand motifs at its C-terminus. This protein forms a complex with LMAN1 (lectin mannose binding protein 1; also known as ERGIC-53) that facilitates the transport of coagulation factors V (FV) and VIII (FVIII) from the endoplasmic reticulum to the Golgi apparatus via an endoplasmic reticulum Golgi intermediate compartment (ERGIC). Mutations in this gene cause combined deficiency of FV and FVIII (F5F8D); a rare autosomal recessive bleeding disorder characterized by mild to moderate bleeding and coordinate reduction in plasma FV and FVIII levels. This protein has also been shown to maintain stem cell potential in adult central nervous system and is a marker for testicular germ cell tumors. The 3' UTR of this gene contains a transposon-like human repeat element named 'THE 1'. A processed RNA pseudogene of this gene is on chromosome 6p22.1. Alternative splicing results in multiple transcript variants encoding distinct isoforms. [provided by RefSeq, Apr 2016] |
UniProt Code: | Q8NI22 |
NCBI GenInfo Identifier: | 49036425 |
NCBI Gene ID: | 90411 |
NCBI Accession: | Q8NI22.1 |
UniProt Secondary Accession: | Q8NI22,Q53SS3, Q68D61, Q8N3M5, A8K7W2, D6W5A9, E9PD95 |
UniProt Related Accession: | Q8NI22 |
Molecular Weight: | 16kDa |
NCBI Full Name: | Multiple coagulation factor deficiency protein 2 |
NCBI Synonym Full Names: | multiple coagulation factor deficiency 2 |
NCBI Official Symbol: | MCFD2 |
NCBI Official Synonym Symbols: | F5F8D; SDNSF; F5F8D2; LMAN1IP |
NCBI Protein Information: | multiple coagulation factor deficiency protein 2 |
UniProt Protein Name: | Multiple coagulation factor deficiency protein 2 |
UniProt Synonym Protein Names: | Neural stem cell-derived neuronal survival protein |
Protein Family: | Multiple coagulation factor deficiency protein |
UniProt Gene Name: | MCFD2 |
成分 | 額 | 保管所 |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
その他の必要な材料と設備:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*ノート: プロトコルは、各バッチ/ロットに固有です。正しい手順については、キットに含まれているプロトコルに従ってください。
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
ステップ | プロトコル |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
ELISAアッセイを実施する場合、可能な限り最良の結果を達成するためにサンプルを準備することが重要です。以下に、さまざまなサンプルタイプのサンプルを準備するための手順のリストを示します。
サンプルタイプ: | プロトコル: |
血清: | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
プラズマ: | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
尿および脳脊髄液: | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
細胞培養上清: | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
細胞溶解物: | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
組織ホモジネート: | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
組織溶解物: | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
母乳: | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |